Contents

MIT 18.06(Linear Algebra) L1 Note

Lecture 1: The geometry of linear equations

1. Mind Map

https://raw.githubusercontent.com/loss4wang/wx_imagehost/main/L1The_geometry_of_linear_equations.png

2. Reading Notes (1.1-2.1)

Chapter 1 Introduction to Vectors

$$ \text{Linear combination} \quad c\vec{v}+ d\vec{w}= c \begin{bmatrix} 1\cr 1\end{bmatrix} +d \begin{bmatrix}2\cr 3\end{bmatrix} =\begin{bmatrix}c+2d\cr c+3d\end{bmatrix} $$

  • 1.1 Vector addition $v+w$ and linear combinations $cv+dw$.
  • 1.2 The dot product $v · w$ of two vectors and the length $\lVert v \rVert = \sqrt{v \cdot v}$
  • 1.3 Matrices A, linear equations $Ax=b$, solutions $x = A^{-1} b.$

1.1 Vectors and Linear Combinations

  • Vector Addition
  • Scalar Multiplication

1.2 Lengths and Dot Products

  • Dot product / Inner Product is the number of $\vec{v}\cdot \vec{w}$
    • $\vec{v}= (v_1,v_2), \vec{w}= (w_1,w_2)$
    • $\vec{v}\cdot \vec{w} = v_1w_1 +v_2w_2$
  • Dot product = 0 → Perpendicular vectors
  • Order makes no difference.
  • Lengths and Unit Vectors
    • length = $\lVert v \rVert = \sqrt{v \cdot v} = (v_1^2 + v_2^2 \cdots +v_n^2)^{1/2}$
    • unit vector u is a vector whose length equals one
    • Unit vector $u = v / \lVert v\rVert$
  • Cosine Formula: If v and w are nonzero vectors then $\frac{v \cdot w}{\lVert v\rVert\lVert w\rVert} = cos\theta$
  • Schwarz Inequality $|v \cdot w| \leq \lVert v\rVert\lVert w\rVert$
  • Triangle Inequality $\lVert v+w\rVert \leq \lVert v\rVert + \lVert w\rVert$
  • Geometric mean $\leq$ Arithmetic mean : $\sqrt{xy} \leq \frac{x+y}{2}$
  • *Cosine Formula: $cosine = v\prime * w / (norm(v)norm(w))$
  • The arc cosine: angle = acos(cosine)

1.3 Matrices

  • Matrix times vector: Combination b of columns of A

    (matrix A acts on the vector x)

    $$ Ax = \begin{bmatrix}1&0&0 \cr -1&1&0\cr 0&-1&1 \end{bmatrix} \begin{bmatrix}x_1 \cr x_2\cr x_3 \end{bmatrix} = \begin{bmatrix}x_1 \cr x_2-x_1 \cr x_3-x_2 \end{bmatrix} $$

  • Ax is also dot products with rows

    $$ Ax = \begin{bmatrix}1&0&0 \cr -1&1&0\cr 0&-1&1 \end{bmatrix} \begin{bmatrix}x_1 \cr x_2\cr x_3 \end{bmatrix} = \begin{bmatrix}x_1 \cr x_2-x_1 \cr x_3-x_2 \end{bmatrix}= \begin{bmatrix}(1,0,0)\cdot(x_1,x_2,x_3) \cr (-1,1,0)\cdot(x_1,x_2,x_3) \cr (0,-1,1)\cdot(x_1,x_2,x_3) \end{bmatrix} $$

  • Linear Equations

    • new viewpoint: Q: Which combination of u, v, w produces a particular vector b?
    • Inverse problem: how to find the input x that gives the desired output b = Ax
    • $\text{Equations: }Ax=b\quad \text{Solution: }x=A^{-1}b$
    • matrix A is “invertible
  • Independence and Dependence
    • Independent columns: Ax=0 has one solution. A is an invertible matrix.
    • Dependent columns: Cx = 0 has many solutions. C is a singular matrix.

Chapter 2 Solving Linear Equations

2.1 Vectors and Linear Equations

  • Two equations, two unknowns

    • Row Picture
    • Column Picture
    • Coefficient matrix
  • The Matrix Form of the Equations

    • Multiplication by rows. (dot products)
    • $Ax = \begin{bmatrix}(row1)\cdot x \cr (row2)\cdot x \cr (row3)\cdot x \end{bmatrix}$
    • Multiplication by columns (combination of columns)
    • $Ax = x(column1) +y(column2) +z(column3)$